to CH₃Br was 152.5:1 and the Mg to Ar ratio was 1: (10^4-10^5) . Before an experiment the background pressure was below 2×10^{-6}

torr, and during an experiment it was 2×10^{-5} to 1.5×10^{-5} torr. Vaporization periods were long, perhaps 14 h, but during spectroscopic observations a shutter covered the KBr cold window, thereby not allowing any Mg vapor or Ar/CH₃Br to contact it. During the observation times the window was rotated 90° into the UV-visible source path and was rotated back during deposition periods.

During observation by UV-visible spectroscopy, a 5-mil KBr (25 mm \times 5 mm) clean window served as a reference sample. A scan from 650 to 230 nm (usually 450-240 nm) was obtained at a scan speed of 0.25 nm/s. A black cloth was used to block out all room light around the entrance of the MI unit into the spectrometer. Peak areas were determined by using an Apple computer graphic tablet.

Direct comparisons of UV-visible spectra with IR spectra were attempted but were not successful due to the very low concentrations of magnesium species in the UV-visible experiments but rather high concentrations needed for IR studies. The UV-visible spectra were the highest quality when the matrix was almost completely clear and transparent whereas good IR spectra required a deep red to black matrix, which has also been reported by Ault.²² Table I summarizes UV-visible data for the Mg and Ca systems.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this work. Program support from the National Science Foundation is also greatly appreciated.

Registry No. Mg, 7439-95-4; Mg₂, 29904-79-8; Mg₃, 72673-77-9; CH₃Br, 74-83-9; CH₃Mg₂Br, 92055-49-7; CH₃Mg₃Br, 92055-50-0.

Ault, B. S. J. Am. Chem. Soc. 1980, 102, 3480-3484. (22)

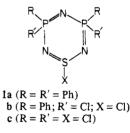
(23) Andrews, L.; Duley, W. W.; Brewer, L. J. Mol. Spectrosc. 1978, 70, 41 - 52

Contribution from the Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Reactions of S_4N_4 with Ph_2PCl , $PhPCl_2$, and PCl_3 : Preparation of the Six-Membered Rings $(Ph_2PN)_2(NSX)$ (X = Cl, Br, I, Ph, NR₂) and the Related Cation $[(Ph_2PN)_2(SN)]^+$

T. CHIVERS* and M. N. S. RAO

Received September 30, 1983


The reaction of S_4N_4 with Ph₂PCl (1:3 molar ratio) in boiling acetonitrile produces the six-membered ring (Ph₂PN)₂(NSCl) in excellent yield. The salt $[Ph_2P(C)N(C)PPh_2]^+Cl^-$ is the major product when the molar ratio is increased to 1:12. The reactions of S_4N_4 with PCl₃ or PhPCl₂ (1:3 molar ratio) also give heterocycles containing the P_2SN_3 ring. Derivatives of the type $(Ph_2PN)_2(NSX)$ (X = I, Ph, NR₂ (R = Me, Et, $-(CH_2)_5-)$) are obtained by treatment of $(Ph_2PN)_2(NSCI)$ with KI, Ph₂Hg, Me₃SiNMe₂, Et₂NH, or C₅H₁₀NH, respectively, in acetonitrile. The cation $[(Ph_2PN)_2(SN)]^+$ is prepared as a trihalide salt by addition of halogens (Br_2 or I_2) to (Ph_2PN)₂(NSCl). Thermolysis at 155 °C or treatment with Ph_3Sb converts $[(Ph_2PN)_2(SN)]^+Br_3^-$ to $(Ph_2PN)_2(NSBr)$. The halides $(Ph_2PN)_2(NSX)$ (X = Cl, Br, I) are readily hydrolyzed to $[Ph_2P(NH_2)N(NH_2)PPh_2]^+X^-$ in air.

Introduction

As part of our investigations of the reactions of S_4N_4 with trivalent phosphorus reagents, e.g. Ph_3P , 1R_2PPR_2 (R = Me, Ph),² and Ph₂PH,³ we have now studied the reaction of S_4N_4 and Ph₂PCl in detail. Although this reaction has not been reported previously, the reactions of S_4N_4 with PCl_3^4 and PhPCl₂⁵ have been described. In both cases the only identified products were the salts $[RPCl_2NCl_2PR]^+Cl^-$ (R = Cl,⁴ Ph⁵) and cyclophosphazenes, $(NPCl_2)_m^4$ although the ³¹P NMR spectrum of the PhPCl₂-S₄N₄ reaction mixture was very complex, suggesting the formation of additional products.

In this paper we report the full details of the preparation of the six-membered ring 1a (X = Cl) from the reaction of S_4N_4 with Ph_2PCl^6 We also describe the synthesis of de-

(5) Fluck, E.; Reinisch, R. M. Z. Anorg. Allg. Chem. 1964, 328, 165.

rivatives of 1a (X = I, Br, Ph, NR₂)⁷ via simple substitution reactions and the formation of the cation $[(Ph_2PN)_2(SN)]^+$ by treatment of 1a (X = Cl) with Br_2 or I_2 . Finally, the reactions of S₄N₄ with PCl₃ and PhPCl₂ were briefly reinvestigated in the light of our results with the $Ph_2PCl-S_4N_4$ system.

Experimental Section

Reactions and General Procedures. Tetrasulfur tetranitride was prepared by the standard procedure and recrystallized from toluene before use.⁸ The following reagents were commercial samples: Ph₂PCl

⁽¹⁾ Bojes, J.; Chivers, T.; MacLean, G.; Oakley, R. T.; Cordes, A. W. Can. J. Chem. 1979, 57, 3171. Bojes, J.; Chivers, T.; Cordes, A. W.; Ma-cLean, G.; Oakley, R. T., Inorg. Chem. 1981, 20, 16.
 Burford, N.; Chivers, T.; Oakley, R. T.; Cordes, A. W.; Swepston, P.

N. J. Chem. Soc., Chem. Commun. 1980, 1204. Burford, N.; Chivers, T.; Cordes, A. W.; Laidlaw, W. G.; Noble, M. C.; Oakley, R. T.;

^{1.;} Cordes, A. W.; Laldiaw, W. G.; Noble, M. C.; Oakley, R. I.; Swepston, P. N. J. Am. Chem. Soc. 1982, 104, 1282.
Burford, N.; Chivers, T.; Richardson, J. F. Inorg. Chem. 1983, 22, 1482.
(a) Becke-Goehring, M.; Fluck, E.; Lehr, W. Z. Naturforsch.; B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol. 1962, 17B, 126.
(b) Glemser, O.; Wyszomeirski, E. Naturwissenschaften 1961, 48, 25.
(c) Groeneveld, W. L.; Visser, J. H.; Seuter, A. M. J. H. J. Inorg. Nucl. Chem. 1959, 2 Act. Chem. 1958, 8, 245

For a preliminary communication see: Chivers, T.; Rao, M. N. S.; (6) Richardson, J. F. J. Chem. Soc., Chem. Commun. 1982, 982. The X-ray crystal structures of 1a $(X = Cl, I, Ph, NMe_2)$ will be

⁽⁷⁾ (7) The X-ray crystal structures of 10 (X = Cl, 1, Pn, 14Me₂) will be reported and discussed in the light of the π-electronic structure of the P₂SN₃ ring in a subsequent paper: Burford, N.; Chivers, T.; Laidlaw, W. G.; Richardson, J. F.; Trsic, M. Inorg. Chem., in press.
(8) Villena-Blanco, M.; Jolly, W. L. Inorg. Synth. 1967, 9, 98.

Table I. Melting Points, Analytical Data, an	³¹ P NMR Chemical Shifts for (Ph ₂ PN) ₂ (NSX) Derivatives and $[(Ph_2PN)_2(SN)]^*X_3$ -
--	---	--

				analytica	l data, ^a %			
compd	mp, °C	С	Н	N	Р	S	X	δ (³¹ Ρ) ^b
(Ph ₂ PN) ₂ (NSCl)	174-175	60.17 (60.06)	4.29 (4.21)	8.98 (8.76)	12.59 (12.91)			+7.8
(Ph ₂ PN) ₂ (NSBr)·MeCN		55.59	4.16 (3.85)	8.62 (8.02)	()		16.25 (15.24)	+8.2
$(Ph_2PN)_2(NSI) \cdot 1/_2 MeCN$	117 dec	50.24 (50.73)	4.00 (3.67)	8.39 (8.28)	9.90 (10.46)	5.34 (5.42)	19.47 (21.44)	+9.9
$[(Ph_2PN)_2(SN)]^+Br_3^-$	ca. 150 dec	42.10 (42.13)	3.08 (2.95)	6.24 (6.14)	. ,	. ,		+9.3
$[(Ph_2PN)_2(SN)]^+I_3^-$	С	37.18 (34.93)	2.63 (2.45)	5.45 (5.10)				+9.5
(Ph ₂ PN) ₂ (NSPh)	146-148	68.47 (69.08)	4.75 (4.84)	7.92 (8.06)				+10.0
$(Ph_2PN)_2(NSNMe_2)$	123-124	63.68 (63.91)	5.38 (5.38)	11.42 (11.47)				+7.8
$(Ph_2PN)_2(NSNEt_2)$	118-119	65.28 (65.28)	5.89 (5.87)	9.55 (10.85)				+7.8
$(Ph_2PN)_2(NSNC_5H_{16})$	136-138	65.91 (65.89)	6.13 (5.73)	10.59 (10.60)				+7.5

^a Calculated values in parentheses; X = halogen. ^b In CDCl₃; chemical shifts are in ppm relative to external 85% H₃PO₄. ^c Crystals became opaque at ca. 100 °C and decomposed at ca. 180 °C, and at 200 °C crystals of I, were observed on the cooler part of the capillary tube.

(Aldrich), PhPCl₂ (Aldrich), PCl₃ (Matheson Coleman and Bell), Me₃SiNMe₂ (PCR), Ph₂Hg (Eastman), Et₂NH (Fisher), and piperidine (Fisher). The liquid reagents and all solvents were dried and distilled before use: acetonitrile from P2O5 and CaH2, methylene dichloride from P2O5, toluene from sodium, and CDCl3 from P2O5. All reactions and the manipulation of moisture-sensitive products were carried out under an atmosphere of nitrogen (99.99% purity) passed through Ridox and silica gel. All glassware was carefully flame-dried for the reactions of S_4N_4 with phosphorus(III) halides.

Infrared spectra (4000-250 cm⁻¹) were recorded as Nujol mulls (CsI windows) on a Perkin-Elmer 467 grating spectrophotometer. Raman spectra were obtained on samples in glass capillaries by using a Jarrell-Ash Model 25-100 double monochromator calibrated with carbon tetrachloride. A Coherent Radiation CR3 argon ion laser was used to produce exciting lines at 488.0 and 514.5 nm. $^1\mathrm{H}$ and $^{31}\mathrm{P}$ NMR spectra were recorded with a Varian XL-200 spectrometer. ³¹P NMR chemical shifts are reported relative to external 85% H₃PO₄. Mass spectra were obtained with a Varian CH-5 instrument operating at 70 eV. Chemical analyses were performed by the Analytical Services of the Department of Chemistry, University of Calgary, and by MHW Laboratories, Phoenix, AZ. Analytical data, melting points, and ³¹P NMR chemical shifts for new compounds are given in Table Ι.

Reaction of Chlorodiphenylphosphine with S_4N_4 (3:1 Molar Ratio). Chlorodiphenylphosphine (3.60 g, 16.3 mmol) was added dropwise (15 min) to a stirred suspension of S_4N_4 (1.00 g, 5.4 mmol) in acetonitrile (25 mL). The reaction mixture was heated at reflux for 3 h, and the solution changed from deep red to orange and, finally, to a yellow color. After cooling to room temperature, the solution was filtered to remove a yellow precipitate of [S₄N₃]⁺Cl⁻ (0.45 g, 2.2 mmol) identified by its IR spectrum.⁹ The filtrate was stored at -20 °C for 1 day to give yellow crystals of (Ph₂PN)₂(NSCl) (2.20 g, 4.6 mmol). Analytical data, the melting point and ³¹P NMR data are given in Table I. IR (major bands): 1439 s, 1205 vs, 1183 s, 1160 m, 1127 vs, 1048 s, 1000 m, 728 s, 692 s, 548 vs, 513 s, 482 m, 430 m, 385 m cm⁻¹

Reaction of Chlorodiphenylphosphine with S₄N₄ (12:1 Molar Ratio). Chlorodiphenylphosphine (3.60 g, 16.3 mmol) was added dropwise (5 min) to a stirred suspension of S_4N_4 (0.25 g, 1.4 mmol) in acetonitrile (25 mL). The reaction mixture was stirred at 23 °C for 18 h to give a pale yellow solution. Removal of solvent gave a pale yellow oil which was washed with toluene (25 mL), giving a white precipitate. After being washed with pentane $(2 \times 5 \text{ mL})$ and drying in vacuo, the product was recrystallized from acetonitrile to give $[Ph_2ClPNPClPh_2]^+Cl^-$. Anal. Calcd for $C_{24}H_{20}Cl_3NP_2$: C, 58.72; H, 4.08; N, 2.85. Found: C, 57.13; H, 3.98; N, 3.09. The {¹H}³¹P NMR spectrum (in CH₂Cl₂/CDCl₃) showed a singlet at +43.9 ppm (referenced to external 85% H₃PO₄; cf. lit.¹⁰ +44.3 ppm).

Reaction of Phenyldichlorophosphine with S₄N₄. A solution of PhPCl₂ (2.95 g, 16.5 mmol) in acetonitrile (10 mL) was added dropwise to a stirred slurry of S_4N_4 (1.0 g, 5.4 mmol) in acetonitrile (20 mL) at 22 °C during 1 h. An exothermic reaction ensued, and all S_4N_4 had disappeared 10 min after completion of the addition. After 4 h, solvent was removed to give a thick yellow oil, which was washed with *n*-hexane (5×12 mL). The residue was dissolved in acetonitrile (20 mL). The hexane extract was cooled to -20 °C for 4 days to give a white solid, which was recrystallized from acetonitrile, giving almost colorless (pale yellow tinge) platelets of $[NP(Cl)Ph]_2(NSCl)$ (0.55 g). Anal. Calcd. for $C_{12}H_{10}Cl_3N_3P_2S$: C, 36.32; H, 2.52; Cl, 26.86; N, 10.59; P, 15.64; S, 8.07. Found: C, 36.66; H, 2.69; Cl, 26.59; N, 10.50; P, 15.67 (by difference); S, 7.89. A second crop (0.11 g) was obtained on further cooling of the hexane extract. On standing at 22 °C, the acetonitrile extract produced c-S₈ (0.10 g), identified by its mass spectrum.

Reaction of Phosphorus Trichloride with S₄N₄. A solution of PCl₃ (2.26 g, 16.5 mmol) in acetonitrile (10 mL) was added dropwise to a stirred slurry of S_4N_4 (1.0 g, 5.4 mmol) at 22 °C during 0.5 h. An exothermic reaction resulted in the formation of a red solution and a yellow precipitate, which subsequently redissolved with the formation of a red oil. After 20 h at 22 °C, solvent was removed from the orange solution to give a brownish yellow, moisture-sensitive oil. Treatment with *n*-pentane left a pale yellow oil whose IR spectrum contained the major bands reported for $(Cl_2PN)_2(ClSN)$.¹² The ³¹P NMR spectrum of this oil (in CH_2Cl_2) showed major peaks at +29.7 (SPCl₃) and +25.0 ppm [cf. lit.¹² +24.5 ppm for $(Cl_2PN)_2(CISN)$] in addition to smaller peaks at +31.5, +20.6, +4.1, -3.5, -20.3, and -20.7 ppm, which are likely due to salts of the type $[Cl_3P(NPCl_2)_nPCl_3]^+Cl^{-4.5}$ Attempted further purification of the oily product was unsuccessful.

Hydrolysis of (Ph₂PN)₂(NSCI). A solution of (Ph₂PN)₂(NSCI) (0.38 g, 0.8 mmol) in methylene dichloride (15 mL) containing a few drops of water was stirred at 22 °C for 4 h. Removal of solvent from the clear pale yellow solution gave a yellowish white solid identified as $[(H_2N)Ph_2PNPPh_2(NH_2)]^+Cl^-$ (0.36 g, 0.8 mmol) by comparison of its infrared and ³¹P NMR spectra with those of an authentic sample.11

Preparation of (Ph₂PN)₂(NSI). Finely powdered potassium iodide (0.35 g, 2.1 mmol) was added (20 min) to a stirred solution of (Ph₂PN)₂(NSCl) (1.0 g, 2.1 mmol) in acetonitrile (25 mL). After 5 h at 23 °C, solvent was removed from the red solution. Addition of methylene dichloride to the residue produced potassium chloride (0.15 g, 2.0 mmol). Red crystals of (Ph₂PN)₂(NSI) (0.98 g, 1.7 mmol) were obtained on cooling the filtrate to -20 °C (see Table I).

- (11) Bermann, M.; Utvary, K. J. Inorg. Nucl. Chem. 1969, 31, 271.
 (12) Pohl, S.; Petersen, O.; Roesky, H. W. Chem. Ber. 1979, 112, 1545.

⁽¹⁰⁾ Haubold, W.; Kammel, D.; Becke-Goehring, M. Z. Anorg. Allg. Chem. 1971, 380, 23

Jolly, W. L. "The Synthesis and Characterization of Inorganic (9) Compounds"; Prentice-Hall: England Cliffs, NJ, 1970; p 504.

amt of molar ratio S_4N_4 , g S_4N_4 : Ph ₂ PCl		time,	products isolated ^{a, b}		
		solvent (mL)	h/temp, °C	precipitate	filtrate
1.0	1:1	CH ₂ Cl ₂ (30)	60/0	S ₄ N ₄ (250 mg) S ₄ N ₃ Cl (200 mg)	S ₄ N ₄ (100 mg) (Ph ₂ PN) ₂ (NSCl) (400 mg)
0.5	1:1	CH ₃ CN (20)	60/22	S_4N_4 (100 mg) $S_4N_3Cl (100 mg)$	S_4N_4 (50 mg) (Ph ₂ PN) ₂ (NSCI) (225 mg)
0.5	1:1	$C_{6}H_{5}CH_{3}$ (25)	24/22	$S_4 N_3 Cl (95 mg)$	S_4N_4 (75 mg) (Ph ₂ PN) _g (100 mg) (Ph ₂ PN) ₃ ·HCl (125 mg)
0.5	1:2	CH ₃ CN (20)	30/22	S ₄ N ₄ (125 mg) S ₄ N ₃ Cl (100 mg)	$(Ph_2PN)_3$ (NSCI) (475 mg) S_4N_4 (25 mg) $(Ph_2PN)_2$ (NSCI) ·CH ₃ CN (50 mg)
2.0	1:3	CH ₃ CN (50)	24/22	S ₄ N ₃ Cl (450 mg)	$(Ph_2PN)_2(NSC1) (3.2 g)$ $(Ph_2PN)_2(NSC1) \cdot CH_3CN (400 mg)$
0.5	1:3	$C_{4}H_{5}CH_{3}$ (25)	24/22		(Ph, PN), (NSCI) CH, CN (700 mg)
1.0	1:3	CH, CN (25)	3/81	S ₄ N ₃ Cl (450 mg)	$(Ph_{2}PN)_{2}(NSCI) (2.2 g)^{c}$
0.5	1:4	CH ₃ CN (50)	30/22		$(Ph_2PN)_2$ (NSCl)·CH ₃ CN (800 mg)
0.25	1:4	$CH_{2}Cl_{2}(15)$	96/22		$(Ph_2PN)_2(NSCI) (350 mg)$
0.25	1:12	CH ₃ CN (20)	18/22		$[(CI)Ph_2PNPPh_2(CI)]^+CI^-(1.4 g)^c$

^a The products $S_4 N_4$,[§] $[S_4 N_3]$ ⁺Cl^{-,9} $(Ph_2 PN)_3$,¹⁵ $(Ph_2 PN)_3$,¹⁶ $(Ph_2 PN)_2$,¹⁶ and $[(Cl)Ph_2 PNPPh_2(Cl)]$ ⁺Cl⁻¹⁰ were identified by their IR spectra. Ph₂P(S)Cl was a major product in all cases (³¹P NMR spectrum). ^b The compound $(Ph_2 PN)_2$ (NSCl) often contains solvent of crystallization when recrystallized from acetonitrile. The solvent can be removed by heating in vacuo at 80 °C. ^c See Experimental Section for details.

Preparation of (Ph₂PN)₂(NSPh). Diphenylmercury (0.73 g, 2.4 mmol) was added (10 min) to a solution of $(Ph_2PN)_2(NSCI)$ (1.0 g, 2.1 mmol) in methylene dichloride (15 mL). After 24 h at 22 °C, a white precipitate of phenylmercuric chloride (0.34 g, 1.1 mmol) was removed by filtration. Cooling the filtrate to -20 °C produced more PhHgCl (0.09 g, 0.3 mmol). Solvent was removed, and the colorless residue was dissolved in acetonitrile (15 mL). White crystals of $(Ph_2PN)_2(NSPh)$ (0.65 g, 1.2 mmol) were obtained after 0.5 h at 22 °C, and a further crop (0.25 g, 0.5 mmol) crystallized out at -20 °C (see Table I).

Preparation of (Ph₂**PN)**₂(**NSNMe**₂). An excess of Me₃SiNMe₂ (ca. 1 mL) was added dropwise (15 min) to a solution of (Ph₂PN₂-(NSCl) (1.0 g, 2.1 mmol) in acetonitrile (25 mL). After 18 h at 22 °C, a small amount (0.02 g) of white crystals, subsequently identified as the dimer (Ph₂PN)₄(NSNMe₂)₂,¹³ was removed by filtration. The filtrate was cooled to -20 °C to give white crystals of (Ph₂PN)₂-(NSNMe₂) (0.81 g, 1.7 mmol; see Table I).

Preparation of (Ph₂PN)₂(NSNEt₂). Diethylamine (ca. 0.5 mL) was added dropwise (10 min) to a solution of $(Ph_2PN)_2(NSCI)$ (1.1 g, 2.3 mmol) in methylene dichloride (25 mL). After 18 h at 22 °C, removal of solvent gave a reddish semisolid residue. Addition of toluene (25 mL) produced a white precipitate of $Et_2NH_2^+Cl^-$ (0.25 g, 2.3 mmol). The volume of the filtrate was reduced to 5 mL, and *n*-pentane (30 mL) was added. After 2 days at -20 °C, white crystals of $(Ph_2PN_2)_2(NSNEt_2)$ (0.58 g, 1.1 mmol) were obtained (see Table I).

Preparation of (Ph₂**PN)**₂(**NSNC**₅**H**₁₀). Piperidine (ca. 0.5 mL) was added dropwise (20 mm) to a solution of (Ph₂**PN**)₂(**NSCl**) (1.1 g, 2.3 mmol) in methylene dichloride (5 mL). After 2.5 h at 22 °C, a white precipitate of $[C_{5}H_{10}NH_{2}]^{+}Cl^{-}$ (0.10 g) was removed by filtration. Solvent was removed from the filtrate in vacuo to give a reddish semisolid residue which was stirred with acetonitrile (25 mL) for 2 h. A mixture of $[C_{5}H_{10}NH_{2}]^{+}Cl^{-}$ (0.18 g) and (Ph₂PN)₂-(NSNC₅H₁₀) was filtered off and separated by washing with carbon tetrachloride (30 mL). The filtrate deposited colorless crystals of (Ph₂PN)₂(NSNC₅H₁₀) (0.60 g, 1.1 mmol) on standing at 22 °C (see Table I).

Preparation of $[(Ph_2PN)_2(SN)]^+Br_3^-$. A mixture of bromine (0.31 g, 1.9 mmol) and $(Ph_2PN)_2(NSCI)$ (0.46 g, 0.95 mmol) in CH₂Cl₂ (15 mL) was stirred at 22 °C for 3 h. Solvent was removed in vacuo, and the residue was treated with toluene (15 mL) to give an orange-red precipitate, which was recrystallized from CH₂Cl₂-MeCN (2:1) to give orange-red crystals of $[(Ph_2PN)_2(SN)]^+Br_3^-$ (0.56 g, 0.82 mmol) (see Table I). IR (major bands): 1437 s, 1223 sh vs, 1215 vs, 1181

s, 1129 s, 1110 vs, 1100 vs, 1085 m, 1040 s, 1032 s, 740 s, 731 s, 696 s, 545 vs, 523 m, 509 s, 378 m cm⁻¹.

Preparation of (Ph₂PN)₂(NSBr). (a) By Thermolysis of $[(Ph_2PN)_2(SN)]^+Br_3^-$. A one-necked flask equipped with a side arm and containing solid $[(Ph_2PN)_2(SN)]^+Br_3^-$ (0.27 g, 0.39 mmol) was evacuated and placed in an oil bath at 135 °C. The temperature of the oil bath was increased slowly and held at 155 °C for 1 h, whereupon the crystals were observed to decompose. The solid residue was cooled to 22 °C and recrystallized from acetonitrile (15 mL). At -20 °C yellow crystals of $(Ph_2PN)_2(NSBr)$ ·MeCN (0.20 g, 0.35 mmol) were formed (see Table I). IR (major bands): 1437 s, 1215 vs, 1181 s, 1129 s, 1110 vs, 1085 m, 1040 s, 1032 s, 1000 m, 755 m, 740 s, 731 vs, 696 s, 545 vs, 523 m, 509 s, 378 m cm⁻¹.

(b) By Reaction of $[(Ph_2PN)_2(SN)]^+Br_3^-$ with Ph₃Sb. Solid Ph₃Sb (0.075 g, 0.21 mmol) was added in small amounts to a stirred solution of $[(Ph_2PN)_2(SN)]^+Br_3^-$ (0.10 g, 0.15 mmol) in CH₂Cl₂ (15 mL) at 22 °C. The orange-red solution became yellow within 5 min. After 2 h, solvent was removed in vacuo, and the residue was treated with acetonitrile (10 mL). A yellow precipitate of $(Ph_2PN)_2(NSBr)$ (0.05 g) was removed by filtration. On cooling to -20 °C, the acetonitrile extract yielded $(Ph_2PN)_2(NSBr)\cdotMeCN$ (0.01 g) (IR spectrum identical with that obtained in part a above).

Preparation of [(Ph₂PN)₂(SN)]⁺I₃⁻. Crystals of iodine (2.0 g, 7.9 mmol) were added to a stirred solution of $(Ph_2PN)_2(NSCI)$ (1.9 g, 3.9 mmol) in CH₂Cl₂ (40 mL) at 22 °C during 15 min. After 5 h, solvent was removed from the dark red-brown solution. The solid residue was stirred with toluene (50 mL) for 2 h. The red-brown precipitate was removed by filtration and recrystallized from CH₂Cl₂-MeCN (3:2) at -20 °C to give red-brown, air-stable crystals of $[(Ph_2PN)_2(NS)]^+I_3^-$ (3.0 g, 3.6 mmol) (see Table I). When the molar ratio of $I_2:(Ph_2PN)_2(NSCI)$ was decreased to 1.5:1 or 1:1, the yield of $[(Ph_2PN)_2(NS)]^+I_3^-$ diminished to ca. 70% and 55%, respectively. IR spectrum (major bands): 1434 vs, 1240 vs, 1178 m, 1156 m, 1121 s, 1109 vs, 1100 sh s, 1090 sh s, 1064 m, 734 s, 725 s, 689 s, 540 vs, 508 s cm⁻¹.

Results and Discussion

Prior to this work the only method available for the synthesis of heterocycles of type 1 was the reaction of Me₃SiNSNSiMe₃ with PCl₅.¹² This preparative route is of limited applicability, however, since other phosphorus(V) halides, e.g. PF₅.¹⁷ PhPF₄.^{17b} or R₂PCl₃ (R = Me, Ph).¹⁸ produce the bicyclic compounds R₂PS₃N₅ on treatment with Me₃SiNSNSiMe₃.

⁽¹³⁾ Chivers, T.; Rao, M. N. S.; Richardson, J. F. J. Chem. Soc., Chem. Commun. 1983, 702.

⁽¹⁴⁾ Steudel, R. Z. Naturforsch., A 1981, 36A, 850.

⁽¹⁵⁾ Krishnamurthy, S. S.; Sau, A. C.; Woods, M. Adv. Inorg. Chem. Radiochem. 1978, 21, 41.

⁽¹⁶⁾ Chivers, T.; Rao, M. N. S. Can. J. Chem. 1983, 61, 1957.

^{(17) (}a) Roesky, H. W.; Petersen, O. Angew. Chem., Int. Ed. Engl. 1973, 12, 415.
(b) Appel, R.; Ruppert, I.; Milker, R.; Bastian, V. Chem. Ber. 1974, 107, 380.
(c) Weiss, J.; Ruppert, I.; Appel, R. Z. Anorg. Allg. Chem. 1974, 406, 329

⁽¹⁸⁾ Burford, N.; Chivers, T.; Oakley, R. T.; Oswald, T. Can. J. Chem. 1984, 62, 712.

Thus it is important to point out that the reactions of S_4N_4 with phosphorus(III) halides, described below, represent a potentially versatile synthesis of ring systems of type 1 (cf. the wide range of derivatives known for cyclophosphazenes¹⁵).

Reaction of Ph₂PCl with S₄N₄. The reaction of Ph₂PCl with S₄N₄ was conducted under a variety of conditions using different solvents, a range of molar ratios (MR) of the reactants, and various temperatures (see Table II). The formation of $(Ph_2PN)_2(NSCl)$ (1a, X = Cl) was favored by polar solvents, and the optimum yield was obtained when a mixture of Ph₂PCl and S₄N₄ (MR = 3:1) was heated in boiling acetonitrile for 3 h.

A proposed scheme for the Ph₂PCl-S₄N₄ reaction must also take account of the following facts: (i) Ph₂P(S)Cl was a major product, (ii) $[S_4N_3]^+Cl^-$ was obtained in significant amounts in all reactions in which MR was $\leq 3:1$, (iii) some S₄N₄ was recovered in those experiments in which MR was $\leq 2:1$, and (iv) S₂Cl₂ was detected among the reaction products. These observations suggest the following overall stoichiometry for the reaction:

$$3S_4N_4 + 9Ph_2PCl \rightarrow 2(Ph_2PN)_2(NSCl) + 3Ph_2P(S)Cl + [S_4N_3]^+Cl^- + S_2Cl_2 (1)$$

When a large excess of Ph_2PCl was present (e.g. MR = 12:1), the only product isolated was [$(Ph_2(Cl)PNP(Cl)-Ph_2]^+Cl^-$. In a separate experiment it was demonstrated that $(Ph_2PN_2)(NSCl)$ was completely consumed by reaction with 3 mol of Ph_2PCl to give $Ph_2P(S)Cl$, [$Ph_2(Cl)PNP(Cl)Ph_2$]⁺- Cl^- , and two other minor phosphorus-containing products (³¹P NMR: +29.6, +21.6 ppm).

The steps involved in the formation of the heterocycle 1a (X = Cl) are a matter of speculation. By analogy with our previous investigations of the reactions of trivalent phosphorus, e.g. Ph_3P^1 or Ph_2PH^3 with S_4N_4 , we suggest initial nucleophilic attack by Ph₂PCl at sulfur followed by migration of the substituent to nitrogen and ring opening to give $Ph_2P(Cl)$ -NSNSNSNS. Migration of chlorine from phosphorus to sulfur and fragmentation of this open-chain intermediate will give $(Ph_2PN)(CISN)$, S_4N_4 , and $c-S_8$ (the last two molecules will react further with Ph₂PCl). The first could dimerize to give molecules of the type (Ph₂PN)₂(NSCl)₂.¹⁹ We have recently prepared the 1,3- and 1,5-isomers of this eight-membered ring and found the former to be unstable at room temperature with respect to loss of NSCl to give 1a (X = Cl), while the latter is thermally stable.²⁰ Alternatively, the open-chain intermediate may react with Ph₂PCl to give 1a directly.

Reactions of S₄N₄ with PhPCl₂ and PCl₃. In the light of our results with the Ph₂PCl-S₄N₄ system we have reinvestigated the reactions of S₄N₄ with PhPCl₂ and PCl₃ in order to determine whether cyclic compounds are formed. In the earlier report of the PhPCl₂-S₄N₄ reaction a *large excess* of PhPCl₂ was used without solvent, and [Ph(Cl₂)PNP(Cl₂)-Ph]⁺Cl⁻ was the only isolated product.⁵ When we performed this reaction using a PhPCl₂: S₄N₄ molar ratio of 3:1 with MeCN as solvent at 23 °C, a very moisture-sensitive white crystalline solid that analyzed well for [NP(Cl)Ph]₂(NSCl) (**1b**) was obtained. The base peak in the mass spectrum at m/e 360 can be attributed to the ion [[NP(³⁵Cl)Ph]₂(NS)]⁺ (cf. the base peak at m/e 44 due to [(Ph₂PN)₂(SN)]⁺ in the mass spectra of **1a** (X = Cl, Br, I)).

The ³¹P NMR spectrum of the product of the PhPCl₂-S₄N₄ reaction at -50 °C (in *sym*-C₂H₂Cl₄) showed four sharp sin-

glets at +30.4, +29.4, +26.3, and +23.0 ppm with approximate relative intensities of 1:3:2:6. As the temperature of the NMR sample is increased, these signals broaden until at +80 °C two singlets at +28.5 and +24.5 ppm, approximately equal in intensity, are observed. This change is reversible. An interpretation of the NMR data in terms of the expected isomers for 1b is not apparent,²¹ and it is possible that the spectral observations are complicated by the tendency of heterocycles of type 1 to undergo ionization of the sulfurhalogen bond.²² The use of a substituted aryldichlorophosphine, e.g. p-CH₃C₆H₄PCl₂ or p-FC₆H₄PCl₂, for the reaction with S₄N₄ would provide an additional NMR probe that may help to identify the isomers.

The reaction of PCl_3 with S_4N_4 (3:1 moarl ratio) in acetonitrile produced 1c as an oil that could not be purified satisfactorily.

Substitution Reactions of (Ph₂PN)₂(NSCl). In preliminary reports we have described some facile ring-opening reactions of (Ph₂PN)₂(NSCl) that occur via S-N bond cleavage under the influence of mild reducing agents, e.g. Ph₃Sb,²³ or nucleophiles, e.g. Me₃SiNSNSiMe₃.⁶ With weak nucleophiles, e.g. Ph₂Hg or I⁻, however, simple substitution of the exocyclic substituent on sulfur can be effected in high yield. The bromide (1a; X = Br) cannot be prepared in this way, but it is obtained in excellent yields from $[(Ph_2PN)_2(SN)]^+Br_3^-$ on being heated to ca. 155 °C or by treatment with Ph₃Sb in acetonitrile (vide infra). The halides (1a; X = Cl, Br, I) are all moisture-sensitive crystalline solids, that produce $[H_2NPh_2PNPPh_2NH_2]^+X^-$ on hydrolysis. Preliminary results indicate that the iodide is considerably less reactive than the chloride. For example, no reaction was observed when (Ph₂PN)₂(NSI) was treated with Me₃SiNSNSiMe₃ or Ph₃Sb in acetonitrile at room temperature. The phenyl derivative $(Ph_2PN)_2(NSPh)$ is stable toward moisture and exhibits high thermal stability (no decomposition after 1 h at 220 °C).

Secondary amines and (dialkylamino)trimethylsilane react readily with $(Ph_2PN)_2(NSCI)$ to give $(Ph_2PN)_2(NSNR_2)$ (R = Me, Et, $-(CH_2)_5$ -) as white crystalline solids that have a strong tendency to undergo a ring-opening dimerization at room temperature in acetonitrile to give the 12-membered rings $(Ph_2PN)_4(NSNR_2)_2$.¹³

Preparation of the Cation $[(Ph_2PN)_2(SN)]^+$. The reaction of 1a (X = Cl) with halogens produces the cation $[(Ph_2PN)_2(SN)]^+$ as trihalide salts (2) that undergo thermal

$$2(Ph_2PN)_2(NSCl) + 3X_2 \xrightarrow{-Cl_2} 1a$$

$$2[(Ph_2PN)_2(SN)]^+X_3 \xrightarrow{-\Delta} or Ph_3Sb$$

$$2(Ph_2PN)_2(NSX) + X_2 (or (Ph_3SbX_2))$$

$$X = Br, I$$

decomposition at ca. 150 °C (X = Br) with loss of a halogen molecule to give the corresponding halide (1a; X = Br, I).²⁴ The presence of X_3^- ions was confirmed by observation of the characteristic ν_1 vibration at 163 cm⁻¹ (X = Br) or 110 cm⁻¹ (X = I) in their Raman spectra.²⁵ Unlike the corresponding

⁽¹⁹⁾ Roesky et al.¹² have proposed that a related eight-membered ring (Cl₂PN)₂(ClSN)₂ is an intermediate in the formation of 1c from PCl₅ and Me₃SiNSNSiMe₃.

⁽²⁰⁾ Burford, N.; Chivers, T.; Rao, M. N. S.; Richardson, J. F. Inorg. Chem. 1984, 23, 1946.

⁽²¹⁾ Since the Cl bound to sulfur in 1a projects above the ring, four isomers are possible for 1b: a pair of structural isomers in which either both Ph substituents or both Cl substituents (on phosphorus) are on the same side of the ring as the S-Cl bond and a pair of optical isomers in which on Ph and one Cl substituent on each phosphorus are on the same side of the ring.
(22) The long S-Cl bond observed for 1a (2.357 (2) Å)⁶ and recent elec-

⁽²²⁾ The long S-Cl bond observed for 1a (2.357 (2) A)° and recent electrochemical data provide evidence in support of this contention: Chivers, T.; Hojo, M., unpublished results.

⁽²³⁾ Chivers, T.; Rao, M. N. S.; Richardson, J. F. J. Chem. Soc., Commun. 1983, 186.

 ⁽²⁴⁾ Similar thermal decompositions have been reported for [S₄N₃]⁺X₃⁻ (X
 = Br or I): Vincent, H.; Monteil, Y.; Berthet, M. P. J. Inorg. Nucl. Chem. 1980, 42.

halo derivatives, $(Ph_2PN)_2(NSX)$, which are very readily hydrolyzed by moisture (vide supra), the trihalide salts can be handled in air for long periods of time without hydrolysis occurring (infrared spectra). The salts 2 have also been prepared by the reaction of the 12-membered ring $(Ph_2PN)_4(SN)_2$ with halogens and by thermolysis of the 12membered dication $[(Ph_2PN)_4(SN)_2]^{2+}[Br_3]_2$, whose structure has been established by X-ray crystallography.²⁰

Conclusion

The reaction of S_4N_4 with phosphorus(III) chlorides in acetonitrile provides a versatile synthesis of heterocycles containing the P_2SN_3 ring. The monofunctional heterocycle 1a (X = Cl), obtained in excellent yield by this route, undergoes a number of simple substitution reactions with nu-

cleophiles. The preparation of other halo derivatives of this ring system (1a; X = Br, I) provides an unusual opportunity to compare the reactivity of sulfur-halogen bonds in similar chemical environments. The structures of 1a (X = Cl, I, Ph, NMe₂) and the tendency for ring-opening reactions to occur via S-N bond cleavage will be discussed in the context of the π -electronic structure of the P₂SN₃ ring in a subsequent paper.

Acknowledgment. We thank the NSERC (Canada) for financial support and Dr. N. R. M. Smith for measurement of the Raman spectra.

Registry No. 1a (X = Cl), 84247-67-6; **1a** (X = Br), 90133-26-9; 1a (X = I), 88008-07-5; 1a (X = Ph), 91948-83-3; 1a (X = NMe_2), 88008-11-1; 1a (X = NEt₂), 89746-70-3; 1a (X = NC₅H₁₀), 91948-84-4; 1b, 91948-86-6; 1c, 38595-77-6; [(Ph₂PN)₂(SN)]⁺Br₃⁻, 90133-25-8; [(Ph₂PN)₂(SN)]⁺I₃⁻, 91948-82-2; [Ph₂ClPNPClPh₂]⁺Cl⁻, 31239-04-0; $[Ph(Cl_2)PNP(Cl_2)Ph]^+Cl^-$, 91948-85-5; $[(H_2N)-Ph_2PNPPh_2(NH_2)]^+Cl^-$, 2960-45-4; S_4N_4 , 28950-34-7; Ph_2PCl , 1079-66-9; PhPCl₂, 644-97-3; PCl₃, 7719-12-2.

> Contribution from the Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India

Photochemical Reduction of the Uranyl Ion with Dialkyl Sulfides

S. S. SANDHU,* K. B. KOHLI, and A. S. BRAR

Received November 3, 1982

The photochemical reduction of the uranyl ion by diethyl, di-n-propyl, and di-n-butyl sulfides has been investigated in acidified water-acetone medium by using radiations in the visible region (\geq 365 nm) from a medium-pressure mercury lamp. The photoreduction is independent of temperature. The quantum yield increases with an increase in dialkyl sulfide or hydrogen ion concentration. The plots of the reciprocal of the quantum yield vs. the reciprocal of initial dialkyl sulfide concentration are linear with intercepts on the ordinate axis. Stern-Volmer quenching constants have been calculated from luminescence measurements. It has been found that physical and chemical quenchings compete with each other. Electronic absorption spectra reveal that there is no ground-state interaction between the uranyl ion and the dialkyl sulfide. On the basis of product analysis, quantum yield of uranium(IV) formation, and Stern-Volmer quenching constants, a dynamic mechanism of oxygen atom transfer from the excited uranyl ion to dialkyl sulfide has been proposed.

Introduction

The photochemistry of the uranyl ion has received considerable attention owing to its characteristic luminescence and power to photooxidize a variety of organic substrates and inorganic ions.¹⁻³ Both intra- and intermolecular mechanisms have been proposed.^{1,3} The most important reactions of the photoexcited uranyl ion appear to be oxidations of substrates either by hydrogen abstraction⁴⁻⁷ or by electron transfer.⁸⁻¹¹ The uranyl ion can also photosensitize certain processes by energy transfer¹² or by electron transfer.¹³ Matsushima^{14,15}

- (1) Rabinowitch, E.; Belford, R. L. "Spectroscopy and Photochemistry of Uranyl Compounds"; Pergamon Press: Oxford, 1964. Balzani, V.; Carassiti, V. "Photochemistry of Coordination Compounds";
- (2) Academic Press: London, 1970. (3) Burrows, H. D.; Kemp. T. J. Chem. Soc. Rev. 1974, 3, 139 and refer-
- ences therein.
- (4) Hill, R. J.; Kemp, T. J.; Allen, D. M.; Cox, A. J. Chem. Soc., Faraday Trans. 1 1974, 70, 847.
 (5) Sergeeva, G.; Chibisov, A.; Levshin, L.; Karyakin, A. J. Chem. Soc., So
- Chem. Commun. 1974, 159. Sakuraba, S.; Matsushima, R. Bull. Chem. Soc. Jpn. 1970, 43, 2359.
- Ahmad, M.; Cox, A.; Kemp, T. J.; Sultana, Q. J. Chem. Soc., Perkin Trans. 2 1975, 1867.
- (8) Matsushima, R.; Fujimori, H.; Sakuraba, S. J. Chem. Soc., Faraday
- Trans. 1 1974, 70, 1702. Burrows, H. D.; Formosinho, S. J.; Miguel, M. da G.; Coelho, F. P. J.
- Chem. Soc., Faraday Trans. 1 1976, 72, 163. (10)Sakuraba, S.; Matsushima, R. Bull. Chem. Soc. Jpn. 1970, 43, 1950.
- Ueno, K.; Ohyoshi, A. J. Inorg. Nucl. Chem. 1974, 36, 379. Matsushima, R.; Sakuraba, S. Chem. Lett. 1973, 115, 1077. Matsu-(12)shima, R.; Kishimoto, T.; Suzuki, M. Bull. Chem. Soc. Jpn. 1975, 48, 3028.

has proposed an excited-state electron transfer process in the quenching of uranyl luminescence by aromatic hydrocarbons, without formation of any final redox product.

In earlier communications it has been reported that the photochemical reduction of the uranyl ion with triphenylarsine,^{16a} triphenylantimony,^{16b} triphenylphosphine,^{16c} and triphenylbismuth^{16d} proceeds via oxygen atom transfer, whereas a mechanism based on α -hydrogen abstraction has been proposed for the photoreduction of uranyl ion with alkanenitriles.¹⁷ In the present investigation, the photochemical reduction of uranyl ion with diethyl, di-n-propyl, and di-n-butyl sulfides has been studied.

Experimental Section

Uranyl acetate (BDH AnalaR) was used as received. Diethyl sulfide, di-n-propyl sulfide, and di-n-butyl sulfide were prepared and purified as reported in the literature.¹⁸ Sulfuric acid and acetone (both BDH AnalaR) were used without further purification. Deionized and doubly distilled water was used.

- (13) Rosenfeld-Grunwald, T.; Brandels, M.; Rabani, J. J. Phys. Chem. 1982, 86, 4745.
- (14) Matsushima, R. J. Am. Chem. Soc. 1972, 94, 6010.
- Matsushima, R.; Sakuraba, S. J. Am. Chem. Soc. 1971, 93, 7143.
 (a) Brar, A. S.; Sandhu, S. S.; Sarpal, A. S. Indian J. Chem., Sect. A
- (16)1978, 16A, 587. (b) Ibid. 1979, 18A, 19. (c) ibid. 1980, 19A, 413. (d) 1980, 19A, 902.
- (17) Brar, A. S.; Chander, R.; Sandhu, S. S. Indian J. Chem. Sect. A 1979, 17A, 554.
- Vogel, A. I. "Practical Organic Chemistry"; Longman Group: London, 1975. (18)

⁽²⁵⁾ Nakamoto, K. In "Infrared Spectra of Inorganic and Coordination Compounds", 2nd ed.; Wiley: New York, 1970; p 84.